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Problème1   
 

1. Schéma décomposé des cas de charge  
 

 
 

2. Flèche à l’extrémité de la poutre pour chaque cas (sur la base de l’annexe) 
 
Pour la charge répartie on a 
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Pour la charge ponctuelle on trouve 

 
 𝑓𝑓2 = 𝑃𝑃(𝑎𝑎+𝑏𝑏)3
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3. D’où, par superposition :  
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Problème 2  
1. Schéma 

 
2. Equilibre des forces et moments de force 

 
Les forces normale et tangentielles sont nulles T = N = 0 
 
Avec le choix des axes défini sur la figure, le moment fléchissant dans la section d’abscisse x 
s’écrit : ( ) 0MxM −=  
 

3. En introduisant l’expression du moment de force dans l’équation différentielle de la déformée, 
on obtient 
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4. Les constantes d’intégration c1 et c2 sont déterminées par les conditions aux limites  
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5. Déformée et flèche 

 

L’équation de la déformée est par conséquent : ( )220 2
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La flèche apparaît en x = 0 : 
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Cette valeur de fmax est donnée par l’annexe II. En ce qui concerne l’équation de la déformée, 
l’abscisse x définie ci-dessus correspond à l’abscisse (-x) dans l’annexe II.  
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En remplaçant dans l’équation ( )xfy =  ci-dessus x par -x et y par –y on doit donc retrouver 

l’équation donnée par l’annexe II : ( ) ( )[ ] 20220
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Problème 3  
1. Schéma 

 
2. Equilibre des forces et des moments de force (3 inconnues  superposition de cas) 

 
Σ𝐹𝐹 = 𝑃𝑃 + 𝑅𝑅𝐴𝐴 − 𝑅𝑅𝐵𝐵 = 0 
 
Σ𝑀𝑀 = 𝑀𝑀𝐴𝐴 + 𝑅𝑅𝐵𝐵 − 𝑃𝑃(

+α
) = 0 

 
 

3. Cas de charge sans RB : Si l’appui B n’existait pas, l’équation de l’élastique due à la charge P 
serait :  
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4. Cas de charge sans P :  

 

𝑦𝑦(𝑥𝑥) =
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[3ℓ𝑥𝑥2 − 𝑥𝑥3] 
 

𝑓𝑓𝐵𝐵2 = 𝑦𝑦(𝑥𝑥 = ℓ) =
−𝑅𝑅𝐵𝐵ℓ3
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5. Superposition des cas de charge : la réaction RB dirigée vers le haut provoque une flèche fB2 
opposée à fB1, de sorte que le déplacement du point B est nul :   
 

𝑓𝑓𝐵𝐵 = 𝑓𝑓𝐵𝐵1 + 𝑓𝑓𝐵𝐵2 = 0 
 
Et donc 

𝑅𝑅𝐵𝐵 =
3𝛼𝛼 + 2

2
𝑃𝑃 

 
6. Calcul de la flèche en C : la flèche en C est la somme algébrique des flèches dues à P et RB 

agissant séparément. 
 
Action de P  𝑓𝑓𝐶𝐶1 = (1 + 𝛼𝛼)3 𝑃𝑃ℓ
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Action de RA  𝑓𝑓𝐶𝐶2 = 𝑓𝑓𝐵𝐵2 − 𝛽𝛽𝐵𝐵2𝛼𝛼ℓ = −𝑅𝑅𝐵𝐵ℓ
3
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D’où la flèche en C 𝑓𝑓𝐶𝐶 = 𝑓𝑓𝐶𝐶1 + 𝑓𝑓𝐶𝐶2 = (3 + 4𝛼𝛼)𝛼𝛼2 𝑃𝑃ℓ3
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7. Calcul des moments de force 

 
Entre 0 ≤ x ≤  
 
Equilibre des moments de force 
 

Σ𝑀𝑀𝑥𝑥 = 𝑀𝑀(𝑥𝑥) + 𝑀𝑀𝐴𝐴 + 𝑅𝑅𝐴𝐴𝑥𝑥 = 0 
 
Avec RB connu 

  

𝑅𝑅𝐴𝐴 = 𝑅𝑅𝐵𝐵 − 𝑃𝑃 =
3𝛼𝛼
2
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Et donc  
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 𝑀𝑀(𝑥𝑥 = 0) = 𝛼𝛼

2
𝑃𝑃 et 𝑀𝑀(𝑥𝑥 = 
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8. Diagramme des efforts 
 
Entre  ≤ x ≤  + α  : on sait que M(x) est linéaire et que M(x =  + α ) = 0 
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